Search results for "magnetron sputtering"
showing 10 items of 17 documents
Reactive direct current magnetron sputtered TiO2 thin films with amorphous to crystalline structures.
2008
International audience; TiO2 thin films were deposited on soda–lime glass substrates by reactive direct current magnetron sputtering in a mixture of pure argon and oxygen. The influence of both the deposition time, td, and the post-annealing treatments on the films morphology, composition and structure was analyzed by scanning electron microscopy, ellipsometry, X-ray photoelectrons spectroscopy, X-ray diffraction (XRD) and Raman spectroscopy. Amorphous TiO2 was obtained for the shortest deposition time, td=15 min. Increasing td up to 30 min, poorly crystallized anatase and rutile phases were formed together with amorphous TiO2, as was revealed by complementary XRD patterns and Raman spectra…
Black carbon-doped TiO2 films: Synthesis, characterization and photocatalysis
2019
This research is funded by the European Social Fund according to the activity ‘Improvement of researchers’ qualification by implementing world-class R&D projects’ of Measure No. 09.3.3-LMT- K-712, project „Investigation of the application of TiO2 and ZnO for the visible light assisted photocatalytical disinfection of the biologically contaminated water“ (09.3.3-LMT-K-712-01-0175). The authors express gratitude for the S. Tuckute, M. Urbonavicius, G. Laukaitis and K. Bockute for their valuable input in current work. © 2019. This work is licensed under a CC BY-NC-ND 4.0 license.
RF magnetron-sputtered coatings deposited from biphasic calcium phosphate targets for biomedical implant applications
2017
Bioactive calcium phosphate coatings were deposited by radio-frequency magnetron sputtering from biphasic targets of hydroxyapatite and tricalcium phosphate, sintered at different mass % ratios. According to Raman scattering and X-ray diffraction data, the deposited hydroxyapatite coatings have a disordered structure. High-temperature treatment of the coatings in air leads to a transformation of the quasi-amorphous structure into a crystalline one. A correlation has been observed between the increase in the Ca content in the coatings and a subsequent decrease in Ca in the biphasic targets after a series of deposition processes. It was proposed that the addition of tricalcium phosphate to th…
Optimization of ZnO:Al/Ag/ZnO:Al structures for ultra-thin high-performance transparent conductive electrodes
2012
Al-doped ZnO (AZO)/Ag/AZO multilayer coatings (50-70 nm thick) were grown at room temperature on glass substrates with different silver layer thickness, from 3 to 19 nm, by using radio frequency magnetron sputtering. Thermal stability of the compositional, optical and electrical properties of the AZO/Ag/AZO structures were investigated up to 400 °C and as a function of Ag film thickness. An AZO film as thin as 20 nm is an excellent barrier to Ag diffusion. The inclusion of 9.5 nm thin silver layer within the transparent conductive oxide (TCO) material leads to a maximum enhancement of the electro-optical characteristics. The excellent measured properties of low resistance, high transmittanc…
Understanding the Conversion Process of Magnetron-Deposited Thin Films of Amorphous ReO$_x$ to Crystalline ReO$_3$ upon Thermal Annealing
2020
Crystal growth & design 20(9), 6147 - 6156 (2020). doi:10.1021/acs.cgd.0c00848
Influence of Ag, Cu dopants on the second and third harmonic response of ZnO films
2009
International audience; Silver- and copper-doped ZnO films were prepared by radio-frequency (RF)-magnetron sputtering on glass and quartz substrates. The influence of dopants content on the microstructural evolution and optical as well as nonlinear optical (NLO) properties were investigated. It has been found that the grain sizes were enlarged with increasing of Ag, Cu dopants amount in ZnO films. The Ag or Cu doping leads to the optical band gap narrowing. Besides, the second-order NLO response of Ag- and Cu-doped ZnO films is lower than that of undoped ZnO film. The second harmonic generation (SHG) efficiency of the ZnO:Ag film was found to be higher than that of the ZnO:Cu film at the si…
Characterization and Electrochemical Properties of Oxygenated Amorphous Carbon (a-C) Films
2016
Amorphous carbon (a-C) films with varying oxygen content were deposited by closed-field unbalanced magnetron sputtering with the aim to understand the effect of oxygen on the structural and physical properties of the films and subsequently correlate these changes with electrochemical properties. The a-C films were characterized by transmission electron microscopy, helium-ion microscopy, atomic force microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy and time-of-flight elastic recoil detection analysis. The electrochemical properties were studied by electrochemical impedance spectroscopy and cyclic voltammetry with several redox systems (Ru(NH3)62+/3+, Fe(CN)64−/3−, dopamine an…
Phonon Bridge Effect in Superlattices of Thermoelectric TiNiSn/HfNiSn With Controlled Interface Intermixing
2020
© 2020 by the authors
High power impulse magnetron sputtering of Zn/Al target in an Ar and Ar/O2 atmosphere: The study of sputtering process and AZO films
2019
Financial support provided by Scientific Research Project for Students and Young Researchers Nr. SJZ/2017/4 realised at the Institute of Solid State Physics, University of Latvia is greatly acknowledged.
Nucleant layer effect on nanocolumnar ZnO films grown by electrodeposition
2013
Different ZnO nanostructured films were electrochemically grown, using an aqueous solution based on ZnCl2, on three types of transparent conductive oxides grow on commercial ITO (In2O3:Sn)-covered glass substrates: (1) ZnO prepared by spin coating, (2) ZnO prepared by direct current magnetron sputtering, and (3) commercial ITO-covered glass substrates. Although thin, these primary oxide layers play an important role on the properties of the nanostructured films grown on top of them. Additionally, these primary oxide layers prevent direct hole combination when used in optoelectronic devices. Structural and optical characterizations were carried out by scanning electron microscopy, atomic for…